3.1058 \(\int \frac{\sqrt{\sec (c+d x)} (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=253 \[ \frac{(2 a A+b B) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}}+\frac{(a B+2 A b) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}}+\frac{B \sin (c+d x) \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}}{d}-\frac{B \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

[Out]

((2*a*A + b*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d
*Sqrt[a + b*Sec[c + d*x]]) + ((2*A*b + a*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a
)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*Sec[c + d*x]]) - (B*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a
+ b*Sec[c + d*x]])/(d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (B*Sqrt[Sec[c + d*x]]*Sqrt[a +
b*Sec[c + d*x]]*Sin[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 1.07895, antiderivative size = 253, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 13, integrand size = 54, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.241, Rules used = {4072, 4031, 4108, 3859, 2807, 2805, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac{(2 a A+b B) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}}+\frac{(a B+2 A b) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}}+\frac{B \sin (c+d x) \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}}{d}-\frac{B \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Sec[c + d*x]]*(a*A + (A*b + a*B)*Sec[c + d*x] + b*B*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

((2*a*A + b*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d
*Sqrt[a + b*Sec[c + d*x]]) + ((2*A*b + a*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a
)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*Sec[c + d*x]]) - (B*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a
+ b*Sec[c + d*x]])/(d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (B*Sqrt[Sec[c + d*x]]*Sqrt[a +
b*Sec[c + d*x]]*Sin[c + d*x])/d

Rule 4072

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4031

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[(B*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/(f*(m + n
)), x] + Dist[d/(m + n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n - 1)*Simp[a*B*(n - 1) + (b*B*(m
+ n - 1) + a*A*(m + n))*Csc[e + f*x] + (a*B*m + A*b*(m + n))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e,
f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && GtQ[n, 0]

Rule 4108

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 3859

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(d*Sqr
t[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{\sec (c+d x)} \left (a A+(A b+a B) \sec (c+d x)+b B \sec ^2(c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx &=\frac{\int \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \left (-a b B+b (A b+a B)+b^2 B \sec (c+d x)\right ) \, dx}{b^2}\\ &=\frac{B \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac{\int \frac{-\frac{1}{2} a b^2 B+a A b^2 \sec (c+d x)+\frac{1}{2} b^2 (2 A b+a B) \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{b^2}\\ &=\frac{B \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac{\int \frac{-\frac{1}{2} a b^2 B+a A b^2 \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{b^2}+\frac{1}{2} (2 A b+a B) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{B \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}-\frac{1}{2} B \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{2} (2 a A+b B) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx+\frac{\left ((2 A b+a B) \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec (c+d x)}{\sqrt{b+a \cos (c+d x)}} \, dx}{2 \sqrt{a+b \sec (c+d x)}}\\ &=\frac{B \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac{\left ((2 a A+b B) \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{2 \sqrt{a+b \sec (c+d x)}}+\frac{\left ((2 A b+a B) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt{a+b \sec (c+d x)}}-\frac{\left (B \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{b+a \cos (c+d x)} \, dx}{2 \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}}\\ &=\frac{(2 A b+a B) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{d \sqrt{a+b \sec (c+d x)}}+\frac{B \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac{\left ((2 a A+b B) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt{a+b \sec (c+d x)}}-\frac{\left (B \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{2 \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}\\ &=\frac{(2 a A+b B) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{d \sqrt{a+b \sec (c+d x)}}+\frac{(2 A b+a B) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{d \sqrt{a+b \sec (c+d x)}}-\frac{B E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{d \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}+\frac{B \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}\\ \end{align*}

Mathematica [C]  time = 4.35286, size = 377, normalized size = 1.49 \[ \frac{\sqrt{\sec (c+d x)} \left (8 a A \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )-\frac{2 i B \csc (c+d x) \sqrt{-\frac{a (\cos (c+d x)-1)}{a+b}} \sqrt{\frac{a (\cos (c+d x)+1)}{a-b}} \sqrt{a \cos (c+d x)+b} \left (a \left (2 b \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{\frac{1}{a-b}} \sqrt{a \cos (c+d x)+b}\right ),\frac{b-a}{a+b}\right )+a \Pi \left (1-\frac{a}{b};i \sinh ^{-1}\left (\sqrt{\frac{1}{a-b}} \sqrt{b+a \cos (c+d x)}\right )|\frac{b-a}{a+b}\right )\right )-2 b (a+b) E\left (i \sinh ^{-1}\left (\sqrt{\frac{1}{a-b}} \sqrt{b+a \cos (c+d x)}\right )|\frac{b-a}{a+b}\right )\right )}{a b \sqrt{\frac{1}{a-b}}}+2 (a B+4 A b) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )+4 B \tan (c+d x) (a \cos (c+d x)+b)\right )}{4 d \sqrt{a+b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Sec[c + d*x]]*(a*A + (A*b + a*B)*Sec[c + d*x] + b*B*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],
x]

[Out]

(Sqrt[Sec[c + d*x]]*(8*a*A*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)] + 2*(4*A*b
 + a*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)] - ((2*I)*B*Sqrt[-((a*(-1
+ Cos[c + d*x]))/(a + b))]*Sqrt[(a*(1 + Cos[c + d*x]))/(a - b)]*Sqrt[b + a*Cos[c + d*x]]*Csc[c + d*x]*(-2*b*(a
 + b)*EllipticE[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)] + a*(2*b*EllipticF[I
*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)] + a*EllipticPi[1 - a/b, I*ArcSinh[Sqr
t[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)])))/(a*Sqrt[(a - b)^(-1)]*b) + 4*B*(b + a*Cos[c +
d*x])*Tan[c + d*x]))/(4*d*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

Maple [C]  time = 0.468, size = 1431, normalized size = 5.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A*a+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x)

[Out]

-1/d/((a-b)/(a+b))^(1/2)*(2*A*cos(d*x+c)^2*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(
d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a-2*A*cos(d*x+
c)^2*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x
+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b+4*A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2
)*(1/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b
))^(1/2))*sin(d*x+c)*cos(d*x+c)^2*b+2*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/
2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*sin(d*x+c)*cos
(d*x+c)^2*a-B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c
))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)^2*a+B*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b
)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)^2*b+2*A*cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^
(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*
a-2*A*cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF
((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b+4*A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x
+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I
/((a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*b+2*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+
c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*sin(
d*x+c)*cos(d*x+c)*a-B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+c
os(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a+B*(1/(a+b)*(b+a*cos(d*
x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),
(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)*b+B*((a-b)/(a+b))^(1/2)*cos(d*x+c)^2*a-B*((a-b)/(a+b))^(1/2)*cos(d
*x+c)*a+B*((a-b)/(a+b))^(1/2)*cos(d*x+c)*b-B*((a-b)/(a+b))^(1/2)*b)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(1/cos
(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B b \sec \left (d x + c\right )^{2} + A a +{\left (B a + A b\right )} \sec \left (d x + c\right )\right )} \sqrt{\sec \left (d x + c\right )}}{\sqrt{b \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="ma
xima")

[Out]

integrate((B*b*sec(d*x + c)^2 + A*a + (B*a + A*b)*sec(d*x + c))*sqrt(sec(d*x + c))/sqrt(b*sec(d*x + c) + a), x
)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fr
icas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B b \sec \left (d x + c\right )^{2} + A a +{\left (B a + A b\right )} \sec \left (d x + c\right )\right )} \sqrt{\sec \left (d x + c\right )}}{\sqrt{b \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*sec(d*x+c)+b*B*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="gi
ac")

[Out]

integrate((B*b*sec(d*x + c)^2 + A*a + (B*a + A*b)*sec(d*x + c))*sqrt(sec(d*x + c))/sqrt(b*sec(d*x + c) + a), x
)